Quiz 11 Chemical Engineering Thermodynamics March 30, 2017

Condensation of a natural gas stream (*Double mixed refrigerant LNG process provides viable alternative for tropical conditions*, Oil & Gas Journal, 100(27) (2002)) results in a liquid stream containing the following compositions. It is desirable to flash the liquid to 5 MPa to produce a liquid and a vapor stream in order to partially separate the components prior to distillation.

	Zi	T _c , ⁰K	P _c , Mpa	ω
METHANE	0.8800	190.6	4.604	0.011
ETHANE	0.0758	305.4	4.88	0.099
PROPANE	0.0442	369.8	4.249	0.152

- a) What is the bubble point of this mixture at 5 MPa? (This is the lower limit to the flash tank temperature).Use solver in excel and the shortcut method. Demonstrate that the method is appropriate after solving. Briefly describe the steps used in solver referencing parameters (*not cells*).
- b) What is the dew point of this mixture at 5 MPa? . (This is the upper limit to the flash tank temperature).

Use solver in excel and the shortcut method. Demonstrate that the method is appropriate after solving Briefly describe the steps used in solver referencing parameters *(not cells)*.

- c) If V/F is desired to be 50% what is the flash temperature? Briefly describe the steps used in solver referencing parameters (*not cells*). Demonstrate that the method is appropriate after solving. How does this temperature compare to parts "a" and "b"?
- d) If the mixture were flashed at -43°C what fraction would be liquid? Briefly describe the steps used in solver referencing parameters (*not cells*). Demonstrate that the method is appropriate after solving.
- e) For parts "c" and "d", what is the molar ratio of methane in the vapor compared to the liquid phase? (n_{Me}^V/n_{Me}^L)
 What is the molar ratio of propane in the liquid compared to the vapor phase? (n_{Prop}^L/n_{Prop}^V)
 Comment on the goodness of separation in the flash process for the two cases.

 $\frac{n_i^V}{n_i^L} = \frac{(V/F)y_i}{(L/F)x_i} \qquad \& \quad \frac{n_i^L}{n_i^V} = \frac{(L/F)x_i}{(V/F)y_i}$

$$\log_{10} P_r^{sat} = \frac{7}{3} (1+\omega) \left(1 - \frac{1}{T_r}\right)$$
9.11

Shortcut vapor pressure equation. Use care with the shortcut equation below $T_r = 0.5$.

Note: The shortcut vapor pressure equation must be regarded as an

approximation for rapid estimates. The approximation is generally good above P = 0.5 bar; the percent error can become significant at lower pressures (and

$$\sum_{i} \frac{z_i(1-K_i)}{1_i + (V/F)(K_i - 1)} = 0$$

$$K_i = \frac{P_i^{sat}}{P} \approx \frac{P_{c,i} 10}{P} \qquad \text{Shortcut K-ratio}$$

$$\sum_{i} x_i = \sum_{i} (y_i / K_i) = 1$$

$$\sum_{i} y_i = \sum_{i} K_i x_i = 1$$

ANSWERS: Quiz 11 Chemical Engineering Thermodynamics March 30, 2017

	Bubble Point	Calculation						
Z								
	zi	Tc, °K	Pc, Mpa	w	Tr>0.5			
METHANE	0.88	190.6	4.604	0.011	1.03964573			
ETHANE	0.0758	305.4	4.88	0.099	0.64884243			
PROPANE	0.0442	369.8	4.249	0.152	0.53584769		-	
n-BUTANE	0	425.2	3.797	0.193	0.46603122	-	$\approx \frac{P_{c,i} 10}{P}$	$1-\frac{1}{T_{e}}$
SOBUTANE	0	408.1	3.648	0.177	0.48555863	$K_{i} = \frac{P_{i}^{au}}{P_{i}}$	$\sum_{i=1}^{n} \frac{P_{c,i}}{10}$	7,1
n-PENTANE	0	469.7	3.369	0.249	0.42187881	$\kappa_i P$	~ P	
	1	sum xK	1.0000002					
1	METHANE	K1	1.13272152					
E	ETHANE	K2	0.03995918					
F	PROPANE	K3	0.00398994					
r	n-BUTANE	nK4	0.00049091					
ľ	ISOBUTANE	iK4	0.00089823				т, °С	
r	n-PENTANE	nK5	6.8372E-05					
		Temp °K	198.156477	Solve for sum	n xK = 1 by var	ying TK	-74.843523	
		P Mpa	5	P>0.05MPa				

Solve sum xK to 1 by varying TK. $T_{BP} = 198^{\circ}K$ (-74.8°C). Tr's >0.5 and Pr> 0.05MPa.

	Dew Point Ca	alculation										
	zi	T- 81/	Da Mara			Tr>0.5						
METHANE	21 0.88	Tc, °K	Pc, Mpa	W 0.011	xi							
		190.6		0.011		1.39042126						
ETHANE	0.0758	305.4		0.099		0.86776127			1			
PROPANE	0.0442	369.8		0.152		0.71664222				$\frac{7}{3}(1 +$	$\omega \left(1 - \frac{1}{T_{r,l}}\right)$	
n-BUTANE	0	425.2	3.797	0.193		0.62326974	<u> </u>	P	P _c	10	1,1	
SOBUTANE	0	408.1	3.648	0.177		0.64938567		$\kappa_i = -$	- ≈ <u></u>	P	•	Shortcut K-ratio
n-PENTANE	0	469.7	3.369	0.249	0	0.56422034						
	1	sum y/K	0.99999774									
	METHANE	K1	4.23211235									
	ETHANE	K2	0.39688923									
	PROPANE	K3	0.07353449									
	n-BUTANE	nK4	0.01577271									
	ISOBUTANE	iK4	0.02400451				т, °С					
	n-PENTANE	nK5	0.00378116									
		Temp [°] K	265.014292	Solve for sun	n y/K = 1 by va	arying TK	-7.98	57081				
		P Mpa	5	P>0.05MPa								
				$\sum r_{i} = 1$	$\sum_{i} (y_i / K_i)$	= 1						
				Δ_{i}^{i}	$\sum \mathcal{Y}_{i'} \mathcal{L}_{i'}$	- 1						

Solve sum y/K to 1 by varying TK. $T_{DP} = 265^{\circ}K$ (-7.99°C). Tr's >0.5 and Pr> 0.05MPa.

c)											
		Flash Given T	Fand P								
	zi	Tc, °K	Pc, Mpa	w	xi	yi	Tr>0.5				
METHANE	0.88	190.6	4.604	0.011	0.7677278	0.9922722	1.0665802				
ETHANE	0.0758	305.4	4.88	0.099	0.144342	0.007258	0.6656522				
PROPANE	0.0442	369.8	4.249	0.152	0.0879303	0.0004697	0.5497301				
n-BUTANE	0	425.2	3.797	0.193	0	0	0.4781049				
ISOBUTANE	0	408.1	3.648	0.177	0	0	0.4981382		7	1.1.1	
n-PENTANE	0	469.7	3.369	0.249	0	0	0.4328086	sat	['] ₃ (1+∞)($1 - \frac{1}{T_{e}}$	
	1	sum D	3.442E-07		1.0000002	0.9999998		$K_i = \frac{P_i^{rat}}{P} \approx \frac{P_{c,i} 10}{P}$		Shorte	ut K-ratio
	METHANE	К1	1.2924792					· p	P	Short	
	ETHANE	K2	0.050283								
	PROPANE	КЗ	0.0053413							niV/niL	niL/niV
	n-BUTANE	nK4	0.0006948						METHANE	1.2924792	0.7737068
	ISOBUTANE	iK4	0.001248				T, *C		ETHANE	0.050283	19.887437
	n-PENTANE	nK5	0.0001022						PROPANE	0.0053413	187.2214
		Temp *K	203.29019				-69.70981				
		P Mpa	5	P>0.05MPa							
		V/F	0.5	Solve for sun	n D = 0 by var	ying TK					
		L/F	0.5								
						Z ;	$(1 - K_i)$				
						$\sum \frac{i}{1+i}$	$\frac{(1-K_i)}{(F)(K_i-1)}$	$\frac{1}{2} = 0$			
						- <u>-</u> 4+0	$r (\kappa_i - 1)$,			

Solve SumD = 0 by varying TK. $T50\% = 203^{\circ}K$ (-69.7°C). This is between the BP and DP limits for the flash tank. Tr's >0.5 and Pr> 0.05MPa.

		Flash Given T	Tand P								
	zi	Tc, °K	Pc, Mpa	w	xi	yi	Tr>0.5				
METHANE	0.88	190.6	4.604	0.011	0.40785	0.9522977	1.2067156				
ETHANE	0.0758	305.4	4.88	0.099	0.2973157	0.0418805	0.7531107				
PROPANE	0.0442	369.8	4.249	0.152	0.2948341	0.0058218	0.6219578				
n-BUTANE	0	425.2	3.797	0.193	0	0	0.5409219				
ISOBUTANE	0	408.1	3.648	0.177	0	0	0.5635874		7. /	13	
n-PENTANE	0	469.7	3.369	0.249	0	0	0.4896743		$\frac{1}{3}(1+\omega)[1$	$\left(-\frac{1}{T_{e}}\right)$	
	1	sum D	-1.59E-07		0.9999999	1		$K_i = \frac{P_i}{P} \approx$	$\frac{P_{c,i}10}{P_{c,i}10}$	Shorte	ut K-ratio
	METHANE	K1	2.3349214					· P	P		
	ETHANE	K2	0.1408622								
	PROPANE	K3	0.019746							niV/niL	niL/niV
	n-BUTANE	nK4	0.003296						METHANE	15.248531	0.0655801
	ISOBUTANE	iK4	0.0054509				т, *С		ETHANE	0.9199203	1.0870507
	n-PENTANE	nK5	0.0006184						PROPANE	0.1289543	7.7546831
		Temp *K	230				-43				
		P Mpa	5,	P>0.05MPa							
		V/F	0.8672092	Solve for sun	n D = 0 by var	ying V/F					
		L/F	0.1327908								
						Z;	$(1 - K_i)$				
						$\sum \frac{i}{1+i}$	$\frac{(1-K_i)}{(F)(K_i-1)}$	$\bar{v} = 0$			
						$- \mu_{i} + 0$	$(K_i - 1)$) —			

L/F = 0.133. Solve for sumD = 0 by varying V/F. Tr's >0.5 and Pr> 0.05MPa.

e) The ratios are given in the excel sheet in the bottom right for parts "c" and "d" For the first case there is good separation of propane to the liquid phase, 187 times the vapor phase. For the second case there is good separation of methane to the vapor phase, 15 times the liquid composition.